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Abstract-A variational principle of Hamilton’s has been used to solve the problem of stationary convection 
with dissipation in the variable property fluid flowing over a flat plate with unheated starting length. Thermal 
diffusivity and viscosity were assumed to be linear functions of temperature. Two ordinary differential 
equations were derived from the variational formulation and then numerically solved for Eckert numbers 
ranging from 0 to 2 using a digital computer. The results show that the value of the Eckert number has a 
considerable influence on heat transfer, while the change of friction factor is negligible. For higher values of 
Bckert number, at a certain distance from the edge of the plate, the thermal boundary layer becomes thicker 

than the momentum boundary layer even for a fluid with a Prandtl number greater than unity. 

NOMENCLATURE 

constant defined by equation (28); 
thermal diff~ivity ; 
constant defined by equation (28); 
skin friction coefficient ; 
specific heat ; 
Eckert number ; 
momentum ~undary-layer thickness; 
characteristic length of the plate ; 
local Nusselt number; 
Prandtl number ; 
Reynolds number ; 
tem~rature; 
free stream velocity ; 
velocity in the x-direction ; 
velocity in the y-direction; 
unheated starting length; 
Cartesian coordinates ; 
thermal to momentum boundary-layer 
thickness ratio (A/f). 

Greek symbols 

A, thermal boundary-layer thickness; 

4 variational notation; 
0, dimensionless y-coordinates (n = yfA, 

J. = y/j); 
PC, dynamic viscosity ; 

P19 Lagrange’s multiplier ; 
“, kinematic viscosity; 
r, dimensionless x-coordinate (c = x/l); 

P2 density ; 

40, dimensionless variable (p =f2/12). 

subscripts 

x,y, partial or ordinary derivatives with respect 

to x,y; 
w, wall property; 

00, free stream property. 

Superscripts 
* 9 dimensionless variable. 

INTRODUCXON 

THE OBJECT of this paper is to present a variational 
approach to the problem of stationary convection in 
the variable property fluid using a variational for- 
mulation of Hamilton’s type introduced by VujanoviC 
[l-3]. According to this formulation the Lagrange’s 
density, containing an additional physically mean- 
ingless parameter, is introduced into the action in- 
tegral. When the first variation of the action integral is 
set equal to zero, the complex differential equations, 
containing the parameter mentioned above, are ob- 
tained. However, in the case of the limiting transition, 
by which this parameter approaches to zero, the exact 
differential equations of the considered process are 
obtained. It has to be noted here that this variational 
formulation is especially convenient for the direct 
variational method - the Kantorovich’s method of 
partial integration. 
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The theory of chain-systems* given by Arzhanykh 
[4] will be used. Although the theory of Arzhanykh 
concerns only the discrete dynamics, in this paper it 
will be extended and applied to the processes being 

described by partial differential equations. 

VARIATIONAL PRINCIPLE 

We shall consider the stationary laminar flow of 
incompressible fluid with variable viscosity 11 and 

thermal diffusivity u, over a semi-infinite flat plate, 
taking into account the mechanical energy dissipation 
caused by viscosity. The values v and ~1 are considered 
to be linear functions of temperature. The temperature 
of the plate T,, is considered constant. 

Using these assumptions, the two-dimensional flow 

in the laminar boundary layer without pressure gra- 

dient is described by the following momentum 

equation 

(1) 

The boundary-layer energy equation is of the form 

(2) 

Equations (I) and (2) along with the continuity 

equation 

and appropriate boundary conditions, when the func- 
tions a(T) and v(T) are known, make possible 
evaluation of three unknown functions u(x,y); v(.Y,~) 

and T(x, y). The boundary conditions for the problem 

under consideration are : 

4’=0: u=r=O; T=T, and 

J’=Jm: Ii = c’, T= T,, 
(4) 

where y, =f‘(x) on y,,, = A(u), f‘(x) and A(x) being 

momentum and thermal boundary-layer thicknesses 

respectively. 

In order to apply the theory of chain-systems two 

Lagrangians are made : 

*According to this theory, the chain-system was titled the 
mechanical system, the generalized coordinates of which can 
be divided into k groups : 

q,,, %z.“..qi”, (i= 1.2.....k) 

with k partial Lagrangians L”’ (i = 1,. ., k) which, in general, 
depend on time, all generalized coordinates and all genera- 
lized velocities, so that equations : 

d ?L”’ dL”1 (i = l.l,...,k) 

give the differential equations of considered system 

Lagrange’s multiplier ~1, = pl(xy) in the first La- 
grangian is unknown. The constant parameter m is 

physically meaningless. 
According to the theory of chain systems functions 

u, I’, Tand pI are generalized coordinates and they are 
divided into two groups. Functions u, L’ and bL1 belong 

to the first group and the corresponding Lagrangian is 

L”‘, while temperature T is in the second group with 
Lagrangian I,@). The corresponding action integrals 

are : 

x=, 

i‘ r 

v.,, 
I, = L”‘dxdv (7) 

” X,, ._ 0 
x = I 

IL = 
i r 

“” L’2bd,ydy. ix) 
4 XI, ., 0 

Differential equations (l)-(3). describing thermal 
and momentum boundary layer over the flat plate, can 

be derived from the variational principle: 

SI, =o (9) 

61, = 0 (10) 

It has to be noted here that the variation of the first 
action integral (7) is related only to the first group of 

coordinates (u, u and pI), while the variation of the 

second action integral (8) is related only to the second 

group of coordinates (T). 
After varying the action integrals (7) and (8) and 

partial integrating we obtain : 

(111 



a c?L@’ aT 
--__ 

ay aT, 1 

dT 1 aa /aTi 
GTdxdy = 0. (12) _u--v-+__ - 

ax ay 2aT ay L 1 

Since velocity u and temperature T are determined 
at all boundaries except at x = t, first members in 
equations (11) and (12) are equal to zero (because 6u 
= 0 and 6T= 0). 

If at x = 1 and y = y, for arbitrary values of 
variations 6u, 6v and 6T, the following conditions 

=o; tg& = 0 and 
*=I Y Y=Y, 

!gsr =o 

x x=1 

Equations (lS)-(18) obtained by the variational me- 
thod are much more complicated than differential 
equations (l)-(3) of the considered process, but when 

(13) m -+ Oequations (16), (18) and (17) become identical to 
equations (l), (2) and (3) describing steady-state 
momentum and thermal laminar boundary layer of 
incompressible variable properties fluid over a flat 
plate. 

are satisfied, the variational equations (11) and (12) 
result in Euler-Lagrange’s equations : 

aP a ix(l) a aw __- 
au 

-_--__=() 
ax au, ay au, 

au) a iw a c?L(l) 
~------ 

au ax all, ay auy 
=o 

(14) 
aL(l) 
-= 0 
ah 

aLc2) d dL(L’2’ a aL(2) 
~---_ --= 

i?T ax al; ay aT, 
0. 

Substituting Lagrangians (5) and (6) into cor- 
responding equations (13) and (14) and dividing by 
exim, we get 

( au au 
m u~+v-+ple-“‘m Su =O 

aY ) I x=1 

,u,sv =o (15) 
Y=Y, 

C 8T 3T 1 aa 8T ’ m @_++-___ - 
ax ay ( > 283 ay 

-~~(v~)+~(V~)--lile-lii^=O (16) 

au au -x/m _ 
mg-dy-he -0 

a” + ay = 0 

ax ay 

Convection in the variable property fluid 

The second of equations (15) gives the boundary 
condition for Lagrange’s multiplier 

Y = Y,P,(X,_Y) = 0, (19) 

while the other equations are identically satisfied. 

APPROXIMATE SOLUTION OF THE PROBLEM 

In order to obtain an approximate solution of the 
problem under consideration the direct method of 
variational calculus in the form of partial integration 
(the method of Kantorovich) will be used. The essence 
of this method is to presume the shapes of the 
unknown functions satisfying a reasonable number of 
boundary conditions. After substituting these fun- 
ctions into action integrals and performing partial 
integrations, so called reduced action integrals are 
obtained. The stationarity conditions of reduced ac- 
tion integrals result in Lagrange’s equations of the 
problem. 

For the problem described by equations (l), (2) and 
(3) we shall presume the shapes of the unknown 
functions u(x.Y), v(x,Y), T(x,y) and ~i(x,y). 

Let the solution for the velocity component u(x, y) 
parallel to the plate be of the form: 

4&Y) = U,#,t?J, PO) 

where U, is the free stream velocity and #J, function of 
a dimensionless parameter 1 given by : 

(17) 

{;@&being the thickness of the momentum boundary 

According to the assumption of the finite thickness 
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of the boundary layer the following boundary con- where 
ditions can be written : 

L’=y,=f’. u=&, !? = (), 
(1)’ 

The corresponding conditions for the function $i are : 

i, = I., = d&, 
1: 41 =l. mdi=o. 

The transverse velocity component v(x,y) is given by 
the approximate function 

u = g(x) N(i) - cp(x)R(i), (21) 

where No.) and R(i,) satisfy the following conditions : 

dN 

In the case of heating of an incompressible fluid will be 
A < 0. B > 0, while the case A > 0, B < 0 corresponds 
to cooling. 

Since 0 = 1 - &(q), equation (28) become 

v = V,,[A* - Aqb,(q)]; il* = A + 1 

U=a,[B* - B+,(q)]: B* = B + 1 

Lagrange’s multiplier can be written in the form 

- = N’(i.) = j. .+‘,(?.) 
di. 

and (22) 

dR 

where Q(n) must be chosen to satisfy boundary 

condition (19). 
- = R’(i.) = 4l(ib), 
di, 

or in the integral form 

(23) We shall substitute velocity profiles (20) and (21), 
temperature profile (27) and Lagrange’s multiplier (30) 
into action integrals (7) and (S), and afterwards we 
shall perform the integration over thicknesses of 
momentum and thermal boundary layer. The cases A 
< fand A >fwill be treated separately. 

After the integration, the following reduced action 
integrals are obtained : 

N(i) = @;(R)di, + C, (24) 

R(R) = $,(n)di. + C,. (25) 

In order to satisfy the boundary condition L’(,, 0j = 0 
according to equation (21) must be: 

N(0) = 0 

(26) 
R(0) = 0. 

The approximate dimensionless temperature profile is 

of the form : 

T- T, 
_____ = 42(V)> 
7-r - T, 

where g = b/A(x)], A(x) denoting the thickness of the 

thermal boundary layer. 
The temperature profile T(x, 4~) can be rewritten in 

the form : 

T= T,&(V) + T,, T, = T,K - T,. (27) 

The boundary conditions : 
2T 

can be written in the form 

We shall assume that kinematic viscosity 11 and 
thermal diffusivity u are linear functions of 

temperature : 

(29) 

~1 = P(x) QG), (30) 

with partial Lagrangians 

--__ F, + T;gA’F, + T;(pA’P, 

a-- (,4* F3 - AF,)-’ 
v U2 T,A’ 

C,f2 ! 

- ‘@ (B* B, - BB,) extm 

For A >/‘reduced action integrals are: 

J, = 
s 

pt(f,f’, A., Y, cp, B, x, m)dx (35) 
x0 

5 

I 
Jz = U,(f, A, A’, g, cp. x, m)dx, (36) 

X” 

with partial Lagrangians : 
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- g (3* B2 - 33,) e+. (38) 

In Lagrangians given above constants and fictions 
are defined by the following integrals : 

Al = 1 dl(2)+;2(2)22 di; A2 = ’ h’(n)4i2(%)%dA; 
s 0 s 0 

1 1 

A3 = s R(~)~~2(~)~d%; A4 = s #;(%)d/:; 
0 0 

As = ’ 4,(1)Q(A)dA; 
s 

A, = ’ #$(A) Q(n)2 d), ; 
0 s 0 

$df,A) = S~~i2(~,n)Ci(r))m;C)dn. (39) 

In equations (31)-(38) the following notation was used 

Let us consider the case A < f(therma1 boundary layer 
is thinner than the momentum one). Functionsf, g, cp, fi 
and A are generalized coordinates. 

According to the theory of chain-systems and with 
regard to the connection between functions f, g, rp, /? 
and A on one side and u, v, Tand pi on the other side, 
we can consider that generalized coordinatesf, g, p 
and /3 belong to the first group and A to the second 
group of coordinates with corresponding Lagrangians 
Ll and L2 respectively. Accordingly when varying 
reduced action integral (31), functionsf, g, 48 and /3 are 
varied, while the variation of reduced action integral 
(32) relates to function A. 

If velocity and temperature, i.e. functionsf, g, rp, j? 
and A are defined at all boundaries except at x = 1 and 
if at x = 1, for arbitrary values of variations Sf and 6A, 
the following natural conditions: 

are satisfied, then the conditions of stationarity of 
reduced action integrals 

61, = 0 and 6f2 = 0 

result in Euler-Lagrange’s equations : 

ah d 34 
--- - - - = 

af dx aft 
o 

ah d ah 
----= 

47 dx &J’ 
o 

=, d aL ---_-_= 
arp dx acpf 

0 

& d aLI ----= 
fw dx S$ 

0 

dJ42 d aL, ---_ 
aA dx dA’ 

= 0. 

(41) 

(421 

(43) 

(44) 

(4.5) 

Introducing partial Lagrangians (33) and (34) into 
equations @O-(45), dividing them by e”‘“’ and accom- 
plishing the limiting transition m -+O, equations (40), 
(42) and (43) are identically satisfied, while equations 
(41) and (4.5) result in : 

+!!+2_?!,4=0 (446) 
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$-$> (B*B, -- BB,) - U , 7-i A’F, Substituting functions c$,+ 42 and N into (39) WC get 
the following constants and functions : 

- T;gF, - T;qP, 

a, TiB 
+ -- 3, - y$z (A” F, - AF,) = 0. (47) 

P 

Equation (44) gives 

-cpA,+(g-UU,f’)A,=O. 
F+ ;;+&$!$‘j-_;: 

(48) j . 

This equation is satisfied only when 

cp=o; g= u,,f“. 

Rearranging equations (46) and (47), using con- 
dition (49) we obtain: 

2U,,A2A’F, f 2U, A’f’F, 

Applying the conditions of stationarity of reduced 

+ N, (33, - BB, - 3*B2) = 0. (50) ; 

action integrals (35) and (36), with partial Lagrangians 
(37) and (38), the differential equations for the case 

*2 = ;A( ._ ; $ + -5 r:. _ 3 .in.) ; 
12A“ , 20 Ah 

A > f are obtained: 

2U,(A, - A,)$’ + v, (Al+& -. /%f$ - A*.&) = 0 
~~=~~~~-~~~~ 

‘. 

2UxA2A’$, + 2U, A’,f’$., *4 = ;; (l”j .;; - ;5 .i;l + K- !I 
693 A’ 1 

. 
(53) 

+. &!$;(/I*$~ _ A$4) Substituting necessary functions and constants (53) 
P 0 into equations (50) and (51) we obtain: 

+ a,, (BB, - BB, - B*&) = 0. (51) 

We shall assume velocity and temperature profiles of 
Targ [5] in the form: 

which satisfy the following boundary conditions : 

y=o, i=o, q=o: 

& =O, #n, =O, u =O, T= T, 
+ &,Af’ 
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32 
+ 105AY-3 - &AY-’ 

I 

- 27Re, Pr, 160 
32 (EB+f)=O. 

+?_Af:_sAf5 
1 105 A3 231 A5 

The solution of the system ofequations (58) and (59) 
is possible only by numerical methods, however there 

+ ax 
J-B-(B+ 
32 

It is convenient to 
variables 

2 

1); 
1 
= 0. (55) 

introduce new dimensionless 

y,d 
f' 

(56) 

where I indicates the characteristic length of the plate. 
According to (56) will be: 

are some difficulties relating to the boundary con- 
dition at the edge of the plate. If the plate is heated 
along its entire length, rather than at x = 0, f = 0 and 
A = 0, thus causing Y = A/f= O/O, x = 0 becomes 
singularity point. In order to avoid this difficulty we 
shall assume that there is an unheated initial length x0 
ofthe plate, so that thermal boundary layer starts at to 
= (x0/l) (Fig. I). In this paper the value to = 0.1 is 
taken in order to compare the results of these calcu- 
lations with results in [6]. Differential equations (58) 
describe the process in the interval 0 I x < x1 (Fig. 1) 
(or in dimensionless form 0 < C I t,, where t1 = 
x,/l), i.e. in the region where Ajx) s f(x). The 
boundary conditions in this region are: 

Rearranging equations (54) and (55) using equations 
(56) and (57) and introducing Reynolds [Re, = 
(u,~v,)], Prandtl [Prm = (~,/a,)] and Eckert 
number {EC = [UQC,(T, - T,)Jf, we obtain the 
differential equations of the problem : 

for A<f 

5=0; cp=o 

oI<10.1: YZO. (60) 

The second of the boundary conditions (60) makes it 
possible to solve independently the first equation in 
(58). In the interval 0.1 < < < gl, equations (58) are 
coupled. 

After solving the system (58) the coordinates of the 
point M, (Fig. l), for which the values ofdimensionless 
variables are 5 = tl, 6” = q(ll) and Y= 1, can be 
determined. These are the boundary conditions for 
solving system of equation (59) for A 2 f. 

- l,~i!~A+t)~’ 

-(‘A+~)Y~+($A+A)Y~] 

For A rf: 

21Re, dqn 3 
~ar.+~Ay-3-(A+l);=0 

$YL;y-1 +$y-L;Y-5 
! 

!!!? 
d5 

8 

! 

16 1 3 
+jp 105Y-12Y-z-280Y-6 

> 

dY - dr 

For-the numerical solution of the system of equa- 
tions (58) and (59) using the method of England [7] the 
following fluid properties and flow conditions were 
supposed : 

Re, = 80000, Pr, = 2, A = -0.5, B = 0.1. 

Since the object of this paper was to establish the 
influence of viscous dissipation on the formation of 
momentum and thermal boundary layers over a flat 

(58) 

Y 

-;; 
a, 

(A+ I)-;AY-‘-;(A+ l)Y-’ 
FIG. 1. Momentum and thermal boundary layers over a flat 

plate. 
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plate, the Eckert number was varied from 0 to 2.0 (EC 
= 0; 0.2; 0.45; 0.5; 1.0; 2.0). 

Numerical solutions give the dimension~~s thick- 
nesses of momentum and thermal boundary layer 
along the plate: 

The local Nussett number is defined by the 
expression : 

According to equations (27) and (52) the local Nusselt 
number can be calculated from the expression 

3x 3t 

or in terms of <, Y and cp 

The focal coefficient of skin friction is given by: 

Since 

and 

y = (v)),=* = v,(l f A@,=, = v,(l + A). 

the final expression for cJ is as follows 

3(1 + A) 3(1 f A) 
c.f T Re,f*- = -----or I 

Re,.vcp 

Plots of functions f*, A*, Nu, and cI for different 
values of Eckert number EC are given in Figs. 2-7. 
Figure 8 shows the influence of Eckert number on local 
Nusselt number along the plate. 

DISCUSSIONS AND CONCLusIONS 

According to Fig. 2, the results obtained for the case 
without viscous dissipation (EC = 0) are in excellent 
agreement with those from [6] and that is a con- 
firmation of the reliability of the variational method 
applied. 

From Figs, 2-7 it is evident that viscous dissipation 
has almost no influence to the thickness of momentum 
boundary Iayer and consequently to the skin friction 
coefficient. 

According to Figs, 2-7 the thickness of thermal 

FIG. 2. Plots of Functions Nu, c,,f* and A* for the case EC = 0. 
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boundary layer increases with increasing Eckert num- 

ber. This is due to the decrease of the temperature 
gradient because of the frictional heat generation. The 

increase of the thermal boundary layer thickness 
causes the decrease of the local Nusselt number as can 
be seen from Fig. 8. Figure 8 also shows that with 
increasing Eckert number there is a more emphasised 

minimum of the Nusselt number. This is due to the 
faster increase of thermal boundary layer thickness at 

the inlet region of the plate with increasing EC. 
A very important conclusion which can be drawn 

from the results of this work is related to the fact that 
Prandtl number Pr > 1 does not always mean that the 

thermal boundary layer is thinner than the momentum 

one. As it can be seen from Figs. 2 7 the assumption A 
<f is correct as long as the Eckert number is lower 

than EC, (in this work EC, 2 0.45). When EC, > EC,, the 
thermal boundary layer can be thicker than the 

momentum boundary layer even though Pr > 1 
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UNE APPROCHE VARIATIONNELLE DU PROBLEME DE LA CONVECTION LAMINAIRE 
STATIONNAIRE AVEC DISSIPATION DANS UN FLIJIDE A PROPRIETES VARIABLES 

R&sum6 ~ On utilise un principe variationnel de Hamilton pour resoudre le probleme de la convection 
stationnaire avec dissipation dans un fluide B proprittts variables s’ecoulant sur une plaque plane avec une 

longueur prealable non chauffee. La diffusivite thermique et la viscositt sont supposes fonctions lintaires de 
la temperature. Deux equations differentielles sont obtenues et resolues numeriquement pour des nombres 
d’Eckert allant de 0 a 2 en utilisant un ordinateur. Les risultats montrent que la valeur du nombre d’Eckert a 
une influence considerable sur le transfert thermique, tandis que le changement sur le coefficient de 
frottement est ntgligeable. Pour des valeurs elevees du nombre d’Eckert, a une certaine distance du bord de la 
plaque, la couche limite thermique devient plus epaisse que la couche de quantite de mouvement meme pour 

un fluide a nombre de Prandtl superieur a l’unitt. 

VARIATIONSRECHNERISCHE BEHANDLUNG DES PROBLEMS DER STATIONAREN 
LAMINAREN KONVEKTION MIT DISSIPATION IN EINEM FLUID MIT VERANDERLICHEN 

STOFFWERTEN 

Zusammenfassung-Ein Variationsprinzip nach Hamilton wjurde auf das Problem der stationaren 
Konvektion mit Dissipation in einem Fluid mit veranderlichen Stoffwerten angewendet. das iiber eine ebene 
Platte mit einem unbeheizten Anfangsabschnitt stromt. Temperaturleitzahl und Viskositat wurden als 
lineare Funktionen der Temperatur angenommen. Aus der Variationsrechnung wurden zwei gewohnliche 
Differentialgleichungen hergeleitet und dann fur Eckert-Zahlen im Bereich von 0 bis 2 mit einem 
Digitalrechner numerisch geliist. Die Ergebnisse zeigen, dal3 der Wert der Eckert-Zahl einen beachtlichen 
EinfluB auf der Warmeiibergang hat, wahrend die Anderung des Reibungsbeiwertes vernachlassigbar ist. Bei 
hoheren Werten der Eckert-Zahl wird ab einem gewissen Abstand von der Plattenanstromkante die 
thermische Grenzschicht dicker als die Impulsgrenzschicht, selbst fur ein Fluid mit einer Prandtl-Zahl groBer 

als eins. 

BAPMAHMOHHbIfi IIOAXOA K HPOEJIEME CTAHMOHAPHOti IIAMMHAPHOfi 
KOHBEKHMM HPM HA_fIHHMM AMCCMIIALIMM B XKMAKOCTW C IIEPEMEHHbIMM 

CBOfiCTBAMM 

AwoTauHn -- BapAaUeoHHbIt npRHUun faMUnbToHa scnoilb3yercn ILjla peIUeHua 3aira’iH CraWoHap- 

HOG KoHaeKUmi npe HanwmU ~UccUnaUUn B noroKe ~UirKocrU c nepebreHHbtbrr4 cBoiIcraabiU Han 

n,~ocro~ nnac-rriuoi? c Ueo6orpesaeb4brb4 HaqanbUbtM yracrKob4 fIpeanonarae_rca. wo rewteparypo- 

npoeontrocrb H aa3Kocrb aanarorca :niHeAUbtbtU @ynKUUfl~u rebtneparypbt. MY tbipuaUwoHHor0 

npU”UHna nO.‘tyW?Hbt LIBa 06blKHOBeHHbIX ,W$@e~HUUa.lbHbIX ypaBHeHMa H Ra RblWCJIWTeJIbHOti 

Mammie nonyqeno RX YUcneHHoe pemeHwe u~rr( 3HaqeHuii ~Uc.-u+ 3KKepra or 0 x0 7 Pe3yrrbrarbt 

noKaabmaror, 9~0 aenwmra wicna 3KKepra 0Kaabmaer 6onbmoe BnUaHUe Ha nepeuoc rerma H now n 

He a,tUReT Ha K03~~AUHeHT rpeHH% npR 6oxee BblCOKllX 3HaYeHMIIX YUC”a 3KKepTa BbtCOra Ien.1OaOrO 

norpaHuwor0 CJtOIl Ha 0npeneneUHoM paCCrOaHUU Or Kpan IlnaCTnHbI UawiHaer npeebmlal b rontUwHy 

~UUahwrecKoro norpaHUsHor0 cnoa name y xwrrtocrefi c wc.30~ flpaHnrn54 6onbtne e,wiHwbt. 


